Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon.
نویسندگان
چکیده
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n-octyl-oligo-oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N-dimethyldodecylamine N-oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size-dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.
منابع مشابه
Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.
Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...
متن کاملThe Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes
Bacterial type III secretion systems serve to translocate proteins into eukaryotic cells, requiring a secreton and a translocator for proteins to pass the bacterial and host membranes. We used the contact hemolytic activity of Shigella flexneri to investigate its putative translocator. Hemolysis was caused by formation of a 25-A pore within the red blood cell (RBC) membrane. Of the five protein...
متن کاملBile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle.
Shigella flexneri uses its type III secretion apparatus (TTSA) to deliver invasins into human cells. This TTSA possesses an external needle with IpaD at its tip. We now show that deoxycholate promotes the stable recruitment of IpaB to the needle tip without inducing a rapid burst of type III secretion. The maintenance of IpaB at the needle tip requires a stable association of IpaD with the Shig...
متن کاملThe Many Faces of IpaB
The type III secretion system (T3SS) is Shigella's most important virulence factor. The T3SS apparatus (T3SA) is comprised of an envelope-spanning basal body and an external needle topped by a tip complex protein called IpaD. This nanomachine is used to deliver effector proteins into host cells to promote pathogen entry. A key component of the matured T3SS needle tip complex is the translocator...
متن کاملNMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2013